CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/43 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Q	uestion	Answer	Mark	Part marks
1	(a) (i)	3.9[0]	2	M1 for 2.6 ÷ 2
	(ii)	$\frac{13}{18}$ cao	2	B1 for any correct unsimplified fraction
	(iii)	24	3	M2 for 9 ÷ 0.375 oe or
				M1 for associating 9 with (100 – 62.5)%
	(b)	109 cao	3	B2 for 108.5 to 108.6 or
				M1 for $250 \times \left(1 - \frac{8}{100}\right)^{10}$ oe
2	(a) (i)	Image at (-2, 5), (1, 5), (1, 7)	2	SC1 for translation $\begin{pmatrix} -4 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 4 \end{pmatrix}$
				or 3 correct vertices plotted but not joined
	(ii)	Image at $(2, -3)$, $(5, -3)$, $(5, -5)$	2	SC1 for a reflection in a horizontal line or in the line $x = -1$ or 3 correct vertices plotted but not joined
	(b)	Rotation	1	Alt
		180 oe	1	Enlargement SF -1 $(-1, 0)$
		(-1, 0)	1	Not as column vector
	(c) (i)	Reflection	1	
		y = -x oe	1	
	(ii)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	2	SC1 for a correct row or column

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

3 (a)		43 200	3	M2 for $0.5 \times (35 + 25) \times 12 \times 120$ oe
3 (a)		13 200	3	or M1 for $0.5 \times (35 + 25) \times 12$ oe
(b)	(i)	$0.5 \times (25 + 30) \times 6 \times 120 = 19800$	M2	Dep on a valid method for obtaining the width of 30 cm B1 for 0.5 × (25 + 35) oe
	(ii)	45.8 or 45.83	1FT	FT for $\frac{19800}{their(\mathbf{a})} \times 100$
(c)		1 hr 39 min	4	B3 for 1.65 [h] or 99 mins or $\frac{33}{20}$
				or M2 for $\frac{19800}{12\times1000}$ oe
				or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000
				If zero scored then SC1 for figs 165 and B1 for accounting their time (in bours) into
				B1 for converting their time (in hours) into hours and minutes
(d)		12.8 or 12.80 to 12.81	3	M2 for $\sqrt[3]{\frac{19800}{3\pi}}$
				or M1 for $\pi r^2 3r = 19800$
(e)		21[.0]	2	M1 for $\frac{19800}{1000} + 1.2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

4	(a)	-1.5, 0.5	2	B1, B1
	(b)	Correct curve	5	B3 FT for 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points and B1 independent for two branches
				SC4 for correct curve but branches joined
	(c)	1.25 to 1.35	1	
	(d)	-1	1	
	(e) (i)	2-x	1	
	(ii)	Ruled line with gradient –1 through (0, 2) and fit for purpose 1.15 to 1.25 cao	2FT 1	SC1 for ruled line, with gradient -1 or through $(0, 2)$, but not $y = 2$ FT their $y = mx + c$ from (e)(i) , if $m \ne 0$ SC1FT for ruled line either with correct gradient or through $(0, c)$, but not $y = c$
5	(a)	2180 or 2181 nfww	4	M2 for
	(a)	2160 01 2161 III.ww	*	680 ² + 2380 ² - 2 × 680 × 2380 cos 65 oe or M1 for correct implicit cosine formula A1 for 4760 000 or 4758 000 to 4759 000
	(b)	78.7 or 78.71	3	M2 for $\frac{2380 \sin 40}{1560}$ or M1 for $\frac{1560}{\sin 40} = \frac{2380}{\sin M}$ oe
	(c)	309 or 308.7	2FT	FT 230 + their (b)
				B1FT 50 + <i>their</i> (b) for 129 or 128.7 [i.e. for <i>C</i> from <i>M</i>]
	(d) (i)	23 39 oe	1	
	(ii)	650	2	M1 for 1560 ÷ journey time

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

6	(a)	101.5625 or 102 or 101.5 to 101.6 nfww	4	M1 for 55, 90, 110, 160 soi M1 for Σfm with frequencies and each m in or on a boundary of a correct interval 2750, 2700, 4400, 6400
				M1 dep on 2nd M for ÷ 160
	(b)	Correct histogram drawn with correct widths and heights 1, 1.5 and 2 (no gaps)	3	B1 for each correct block If zero scored, SC1 for correct heights or frequency densities
	(c)	$\frac{40}{160}$ oe	1	
	(d) (i)	$\frac{1560}{25440}$ oe	2	M1 for $\frac{40}{160} \times \frac{39}{159}$
	(ii)	$\frac{4000}{25440}$ oe	3	M2 for $\frac{40}{160} \times \frac{50}{159} + \frac{50}{160} \times \frac{40}{159}$ oe
				or M1 for one of these products soi
7	(a)	83 nfww	4	B3 for $17x = 1411$ or $17x = 14.11$ oe in form $ax = b$ or final answer of 0.83 or B2 for $6x + 11x - 55 = 1356$ oe or $6x + 11x - [0.]$ $55 = 13[.]$ 56 or M1 for $6x + 11(x - [0.0]5) = 13[.]$ 56
	(b)	$\frac{1}{3}$ oe nfww	4	M1 for $y(y+3)$ oe or $\frac{1}{2}(2y+1)(y+1)$ oe and B2 for $2y^2 + 6y = 2y^2 + 2y + y + 1$ oe or better or B1 for $(2y+1)(y+1) = 2y^2 + 2y + y + 1$ soi

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

			45.700
(c)	25 nfww	4	M1 for $\frac{4[.]80}{w-1}$ or $\frac{7[.]80}{2w-11}$
			M1 for $\frac{4[.]80}{w-1} = \frac{7[.]80}{2w-11}$ oe
			M1 for $480(2w-11) = 780(w-1)$ oe
			or
			ALT
			M1 for $n(w-1) = 4[.]80$ or $n(2w-11) = 7[.]80$
			M1 for $2wn - 11n = 7[.]80$
			2wn - 2n = 9[.]60 oe
			M1 for $9n = 180$ oe or better or
			ALT
			M1 for $n(w-1) = 4[.]80$ or $n(2w-11) = 7[.]80$
			M1 for $\frac{4[.]80 + n}{n} = \frac{7[.]80 + 11n}{2n}$
			M1 for $9n = 180$ oe or better
(d) (i)	$\frac{1}{2}u(3u-2) = 2.5$	M1	First step must involve $\frac{1}{2}u(3u-2)$
	One further correct step leading to		2
	$3u^2 - 2u - 5 = 0 \text{ with no errors}$	A1	
(45)			
(ii)	(3u-5)(u+1)	2	SC1 for $(3u + a)(u + b)$
			where $ab = -5$ or $a + 3b = -2$ [a, b integers]
	20.1		their $\frac{5}{3}$
(iii)	29.1 or 29.05	3	$\mathbf{M2} \text{ for tan} = \frac{their \frac{5}{3}}{3 \times their \frac{5}{3} - 2}$
			or
			M1 for substituting <i>their</i> positive value of u into
			[u and] 3u - 2
8 (a) (i)	Angle A is common to both	1	Accept $DAB = CAB$ oe
	triangles oe $ADB = ABC$		
	ADB = ABC Third angle of triangles equal oe	1dep	Dep on previous mark
(41)			Dep on provious mans
(ii)	Similar	1	
(iii)	8.25	2	M1 for $\frac{16}{12} = \frac{11}{RR}$ oe or better
(,		_	$\frac{12}{12} = \frac{12}{BD} = 12$
(b) (i)	38	1	
(ii)	38	1	
(iii)	78	1	
(iv)	26	1	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

	(c)	36 nfww	5	B4 for an equation in m that simplifies to $5m = 180$ or B1 for each of 3 of the listed angles expressed in terms of m , in it's simplest form, stated or labelled on diagram Angle $PQO = m$ Angle $QOR = m$ Angle $QOR = 2m$ Angle $PQR = 3m$ or $180 - 2m$ or $90 + \frac{m}{2}$ Angle $POR = 180 - m$ or $4m$ or $360 - 6m$
	()	0	1	Reflex angle $POR = 360 - 4m$ or $6m$ or $180 + m$
9	(a)	8	1	
	(b)	3	2	B1 for $[g(0.5) =]2$ soi or
				M1 for $2\left(\frac{1}{x}\right) - 1$ or better
	(c)	$\frac{x+1}{2}$ final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or better
		2		or $\frac{y}{2} = x - \frac{1}{2}$
	(d)	4x-3	2	M1 for $2(2x-1)-1$
	(e)	$4x^2 - 4x + 7$	2	B1 for $\left[\left(2x - 1 \right)^2 \right] = 4x^2 - 2x - 2x + 1$
	(f)	x	1	
	(g)	$g^{-1}(x) = g(x)$	1	
	(h)	fh(x)	1	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0580	43

10	A -13, -20	1	
	-7n + 22 oe	2	SC1 for $-7n + k$ or $kn + 22$ oe
	$\mathbf{B} = \frac{9}{22}, \frac{10}{23}$	1	
	$\frac{n+4}{n+17}$ oe	2	B1 for $n + 4$ oe or $n + 17$ oe seen, but not in wrong position
	C 26, 37	1	
	$n^2 + 1$ oe	1	
	D 162, 486	1	
	$2 \times 3^{n-1}$ oe	2	SC1 for $k \times 3^{n+p}$ [k, p integers]
			Accept $2 \times \frac{3^n}{3}$